

WATER CHEMISTRY

Hydrogeology Engineer MSc

2023/24 Semester II.

COURSE COMMUNICATION FOLDER

University of Miskolc Faculty of Earth and Environmental Science and Engineering Institute of Water Resources and Environmental Management

Table of contents

1.	Course introduction, teacher, number of lessons, credits	. 3
2.	Course syllabus	. 4
3.	Example Test	. 5

1. Course introduction, teacher, number of lessons, credits

1. Course indicated in teacher, maintenance of teasons, creates							
Course Title: Water chemistry	Code: MFKHT726005						
Instructor: Dr. Márton Tóth, assistant professor	Responsible department/institute: Institute of Water Resources and Environmental Management Type of course: Compulsory						
Position in curriculum (which semester): 2	Pre-requisites (if any):						
No. of contact hours per week (lecture +	Type of Assessment (examination/ practical						
seminar): 1+1	mark / other): practice mark						
Credits: 2	Course: full time						

Course Description:

The students will be familiar with the structure and chemical properties and reactivity of water molecule, and will learn about the main principle of the equilibriums exist in aquatic system.

The short curriculum of the subject:

Physical and chemical properties of water. The state diagram of water. Properties of ice, liquid water and steam. Supercritical state of water. The chemical structure of water molecule and its consequences. Behavior of water as a solvent. Dissolution process of gases, liquids and solids in water. Behavior of water as a chemical partner. Acid base equilibria, hydrolysis, complex formation and redox reactions. Isotopic, and chemical compositions of different waters. The main characteristic parameters used for description of water quality.

Compatencies to evolve:

Knowledge: T1, T2, T6, T7, T8

Ability: K1, K6, K9, K10, K11, K12, K15

Attitude: A2, A5

Autonomy and responsibility:F2, F5, F6

Assessment and grading:

Students will be assessed with using the following elements.

Final exam 100% Total 100%

Grading scale:

% value Grade
90 -100% 5 (excellent)
80 - 89% 4 (good)
70 - 79% 3 (satisfactory)
60 - 69% 2 (pass)
0 - 59% 1 (failed)

Compulsory or recommended literature resources:

- Appelo, C. and Postma, D. (2005) Geochemistry, Groundwater and Pollution. 2nd Edition, Balkema, Rotterdam.
- Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters. 3rd Edition, John Wiley & Sons, Inc., New York.
- Brezonik, P. and Arnold, W. (2011) Water Chemistry: An Introduction to the Chemistry of Natural and Engineered Aquatic Systems. Oxford University Press, Oxford.

2. Course syllabus

Water chemistry Syllabus Spring semester Hydrogeological Engineer MSc, Semester II., Compulsory course

02.14	The structure and physical properties of water
02.21	Inorganic chemical composition of natural waters
02.28	Dissolution
03.06	Thermodynamic basis for equilibrium chemistry
03.13	Acid-base systems
03.20	Acid-base systems – The carbonate system
03.27	Labor I.
04.03	Holiday
04.10	Redox equilibria I.
04.17	Redox equilibria II.
04.24	Labor II.
05.01	Holiday
05.08	Test
05.15	Test repetition

3. Example Test

Water chemistry

TEST 1. 2022.05.04

Total point: 10

Short questions:

- 1. What is electrostriction?
- 2. What are the most common anions in water?
- 3. Exothermic process when...?
- 4. What is carbonate alkalinity?
- 5. What is reduction?
- 6. What is evaporation heat?
- 7. What is incongruent solution?
- 8. What is Raoult-law?
- 9. How the pH changes during solution of Na₂CO₃?
- 10. What is reducing agent?

Questions: Total point: 20

- 1. What do you know about viscosity of water?
- 2. What do you know about the major anions chemical properties in water?
- 3. What do you know about the solution of CO₂ in water? (forms, pH dependency, alkalinity definitions)
- 4. Derive the redox equation of oxidation of Fe(II) by O₂?

Calculation exercises: Total point: 20

1. What is the ΔG° for acid-mediated dissolution of goethite (FeOOH)? (take care about the stochiometric coefficients)

 $(G_f{^\circ} \text{ for FeOOH is -488.6 kJ/mol}, G_f{^\circ} \text{ for Fe}^{3+} \text{ is -4.6 kJ/mol}, G_f{^\circ} \text{ for H}_2\text{O is -237.18 kJ/mol})$

2. The chemical analysis of a water sample is:

Ca	K	Mg	Na	SO ₄ ²⁻	Cl-	HCO₃⁻
ppm	ppm	ppm	ppm	ppm	ppm	ppm
83.2	9.9	23.5	60.2	92.5	25.7	421.4

Is there charge balance between cations and anions? If there is not balance give suggestion what could be the problem!

- 3. Calculate the ionic strength of the previous water sample!
- 4. Calculate the activity coefficient of SO_4^{2-} in the previous water sample by Davis equation? (A=0.5042 (T=20°C))