

GEOTECHNICAL ENGINEERING

Environmental engineering MSc.

2023/24 II. semester

COMMUNICATION FILE OF THE COURSE

University of Miskolc Faculty of Earth and Environmental Science and Engineering Institute of Water and Environmental Management

Contents

- Course description, Responsible Instructor, Number of lectures and seminars, Credits
 Topics of the subject (by hours)
 Sample of a mid-term exam
 Topics of the exam

- 5. Others

1. Course description, Responsible Instructor, Number of lectures and seminars, Credits

Course Title: Geotechnical engineering			Credits: 4
Type of course not relevant)	e: compulsory/elective (delete that is	Neptun code: MFKHT	720025
Type (lec. / ser	n. / lab. / consult.) and Number of Con	tact Hours per Week: 21	ec. + 1 sem.
Type of Assess	sment (exam. / pr. mark. / other): exam	n.	
Students will b	e assessed with using the following ele	ements.	
Reports:	20 %		
Midterm exam	30 %		
Exam	<u>50 %</u>		
Total	100%		
Students must a 50%.	achieve 60% of the mid-term exam and	d reports score, the exam	result has to reach minimum
Grading scale:			
% value	Grade		
85 -100%	5 (excellent)		
75 - 84%	4 (good)		
65 - 74%	3 (satisfactory)		
50 - 64%	2 (pass)		
0 - 49%	1 (failed)		
Position in Cur	riculum (which semester): 2 nd		
Pre-requisites ((<i>if any</i>): -		
C			

Course Description:

The students will be familiar with the basic concepts of geotechnical engineering, with the principles of designing and with the construction methods of different buildings and objects.

The short curriculum of the subject:

The subject follows the geotechnical tasks of the construction works, starting from the planning of the geotechnical preparatory activity through the model calculations to the technical supervision. The course introduces the student to the process of geotechnical design, the related standard environment and its application. The presentation of failure and serviceability limit states and the design methods defined by EC7 are part of the course. During the semester, the students' task is to perform design tasks for STR, GEO, EGQ, HYD and UPL limit states. Technological and design questions and types of flat slabs, as well as their dimensioning for subsidence and ground breaking, will be introduced during the course. Students can learn about the basics of stability tests for their natural and artificial copper. In addition to deep foundation technologies, the aim of the course is to introduce planning tasks.

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

- J.A. Knappett, R.F. Craig: Craig's soil mechanics, Eight edition, Spon Press, London 2012.
- Atkinson, J.: The Mechanics of Soils and Foundations. Taylor and Francis, London, 2007.
- Braja M. D.: Advanced soil mechanics, Spon Press, 2008
- Aysen A.: Soil mechanics, Basic concepts and engineering applications, Taylor&Francis, 2002.

- Charles W. W. Ng., Menzies B.: Advanced unsaturated soil mechanics and engineering, Spon Press, 2007.
- Jiang M., Liu F., Bolton M.: Geomechanics and geotechnics: from micro to macro, Taylor and Francis 2010.
- Orr T. L. L., Farell E. R.: Geotechnical design to EUROCODE 7, Springer-Verlag, London 1999.
 I. Vanícek, M. Vanícek: Earth Structures. Springer, ISBN: 978-1-4020-3963-8, 2008. pp. 497-606

Competencies to evolve:

T1 – The environmental engineer knows, and apply the scientific and technical theory, and practice. Active professional English language skills.

Responsible Instructor (*name, position, scientific degree*):

Tamás Kántor Dr., assistant professor

Other Faculty Member(s) Involved in Teaching, if any (*name, position, scientific degree*):

Viktória Mikita Dr., assistant professor

Topics of the subject (by hours)

Geotechnical engineering. Topics of the subject (Plan of the semester) Spring semester Hydrogeological engineering MSc, 2. semester

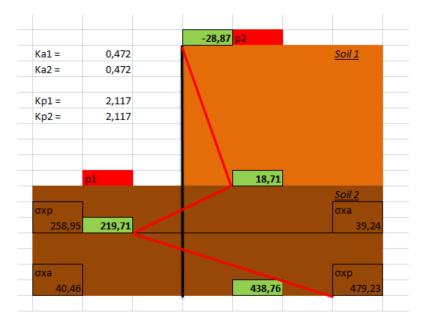
Date	Topic of lecture and seminar
2024.02.15.	Introduction (requirements, thematic, time schedule, Geotechnical Engineering)
2024.02.22.	Stress fields in soil, earth pressures (geostatic earth pressure; Rankine's earth pressure theory; earth pressures as a function of wall movement) (HW)
2024.02.29.	Basics of geotechnical design (general characterization of EuroCode; limit states; design methods; characteristic value; design value; partial safety factor)
2024.03.07.	Shallow foundations (types of shallow foundations; design process of shallow foundations; settlement of shallow foundations; bearing capacity of shallow foundations)
2024.03.14.	Practice – Calculation
2024.03.21.	Deep foundations (types of deep foundations; deep foundation technologies)
2024.03.24.	Break
2024.04.04.	Break
2024.04.11.	Stability of self-supporting soil masses (types of slope movements; factors influencing stability; stability testing methods)
2024.04.18.	Practice – Calculation
2024.04.25.	Retaining structures (types of retaining structures; design of retaining structures; stresses around retaining structures)
2024.05.02.	Practice – Calculation
2024.05.09.	Midterm exam 1 st chance
2024.05.16.	Midterm exam 2 nd chance

3) Sample of a mid-term exam

GEOTECHNICAL ENGINEERING MID-TERM EXAM 2018-05-07

- 1. Calculate the results of following examples!
- Geostatic pressure, if $\rho = 1,983 \text{ g/cm}^3$, h = 4,7 m $\sigma_z = 93,2 \text{ kN/m}^2$
- Passive earth pressure, if $\sigma_z = 188 \text{ kN/m}^2$, $\phi = 25,7^\circ$, c = 18 kPa

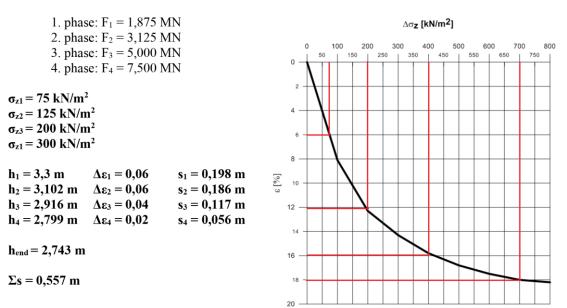
 $\sigma_{xp} = 533,2 \text{ kN/m}^2$

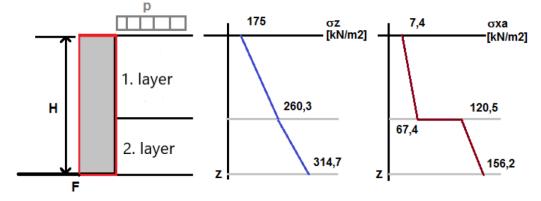

- Compression module, if $\Delta \epsilon = 8,3$ %, $\Delta \sigma_z = 213$ kPa

$$E = 2,56 MPa$$

- Earth pressure at rest, if $\phi = 27^{\circ}$, c = 18 kPa, $\sigma'_z = 145 \text{ kN/m}^2$, $\sigma'_{z, \text{ max}} = 287 \text{ kN/m}^2$ $\sigma_{x0} = 111.6 \text{ kN/m}^2$
- K_0 , K_a and K_p , if $\phi = 31,1^\circ$ $K_0 = 0,483$ $K_a = 0,319$ $K_p = 3,137$
- Pressure under the point foundation, if B = 2,4 m, L = 2,7 m, F = 2,954,880 N
 - $\sigma_{z0} = 456 \text{ kN/m}^2$
- Effect of external stress, if $p = 456 \text{ kN/m}^2$, $\sigma_z / p = 0,757$ $\sigma_{z1} = 345,2 \text{ kN/m}^2$
- Strain in X direction, if $\sigma_z = 677 \text{ kPa}$, $\sigma_x = 415 \text{ kPa}$, $\sigma_y = 369 \text{ kPa}$, E = 3.8 MPa, v = 0.31 $\varepsilon_x = 2.39 \%$ (= 0.0239)

2. Define (calculate and draw) the stress distribution around the given sheet pile after the following data!

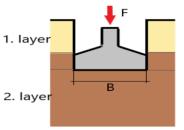

The units of pressure results are in kN/m².


3. A bridge pier is standing on a 5×5 m point foundation. Calculate the settlement of it during the phases of construction work!

The previous site investigations show that there is only on compressible layer under the surface which has a 3,3 m thickness. After the oedometric test the compression curve is given (find below).

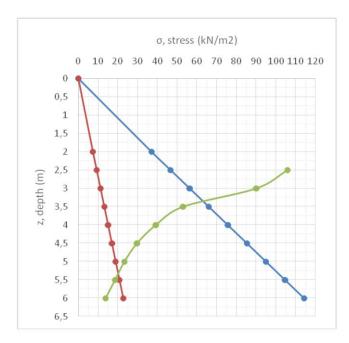
The construction is divided for four phases and during each phases there is an additional external force. (find below) At the end the total force will be 17,5 MN on the foundation.

4. Define the active earth pressure distribution next to the retaining structure and the resulting force of active earth pressure and its acting depth!


$$ze =$$
4,81m $(z1 = 2,15m; z2 = 2,85m; z3 = 5,65m; z4 = 6,1m)$ $Fe =$ 534,5 kN $(F1 = 31,9 \text{ kN}; F2 = 129,1 \text{ kN}; F3 = 325,4 \text{ kN}; F4 = 48,2 \text{ kN})$

	soil type	h _i (m)	ρ _i (g/cm3)	фі (°)	c _i (kN/m2)
1. layer	clay	4,3	1,983	10	69
2. layer	silt	2,7	2,016	12	31
p =	175	kN/m2			

5. Define the depth of limit of calculation (m₀) in the following situation!


ρ_1	$[g/cm^{3}] =$
ρ_2	$[g/cm^{3}] =$
F	[kN] =
В	[m] =
L	[m] =
1.	layer =
2.	layer =
Found	laval —

1,850 1,930
610
2,4
2,4
0,0 - 2,0 m
2,0 - 6,0 m
2,5 m

Found. level =

	Z _{Found} .		σ _{z0} /5			
Z _{surf.} [m]	[m]	σ_{z0} [kPa]	[kPa]	z/B [-]	σ _z /p [-]	σ _{zi} [kPa]
0	-	0	0	-	-	-
2	-	37,00	7,40	-	-	-
2,5	0	46,65	9,33	-	-	105,9
3	0,25	56,30	11,26	0,10	0,85	90,0
3,5	0,75	65,95	13,19	0,31	0,50	53,0
4	1,25	75,60	15,12	0,52	0,37	39,2
4,5	1,75	85,25	17,05	0,73	0,28	29,7
5	2,25	94,90	18,98	0,94	0,22	23,3
5,5	2,75	104,55	20,91	1,15	0,18	18,5
6	3,25	114,20	22,84	1,35	0,13	13,8

The depth limit of calculation is $m_0 = 5,4$ m

4) Sample of an exam

UNIVERSITY OF MISKOLC MISKOLCI EGYETEM Környezetgazdálkodási Intézet Institute of Environmental Management Hidrogeológiai-Mérnökgeológiai Department of Hydrogeology and **Engineering Geology** Intézeti Tanszék GEOTECHNICAL ENGINEERING Exam 2018-06-19 Answer shortly (10-15 sentences) the following questions! If possible, draw a diagram, or a curve for demonstration! 1. Describe the Geotechnical Categories (GC's), based on the EUROCODE 7! (examples, design requirements, design procedure) 2. Describe the passive earth pressures after Rankine's theory in case of cohesive soils $(c>0, \Phi>0)$ (3) How do you use the method of Block when evaluating slope stability? What are the main forces around the soil wedge (draw them)? () Show me the CPT(u) test! (Parts of it, measured parameters, handling of its results, advantages vs. disadvantages) (5) When do we have to use Deep foundations? Show me on a draw the technological steps of the construction of a CFA pile! As Sonde - it is a statical, indisect, in - Dithe measurement - in this method, we have to press a standard come into the soil with a relatively thin metal root, and we measure the measure the force for pressing down -basic idea that we have to separate 3 parameters, there are [U] - pose press by water ; [fr] - shin friction ; [9] - the top of come Adventage : easy to make it ; relatively cheap; noundays professions have a lot of explainence for this method, so we can use it exactly ; we can get several & inform with this measurer, Disades: we can't use it in hand will debris, many gravel ...) Parameters Parameters [U] - difference between granules and cohesice soit "[] [4] - difference between granules and cohesice soit "[] [$\frac{1}{2}/q_c$] -> layer boundars, voil type [$\frac{1}{2}/q_c$] -> hais mechanical inform; density (and approx. [q_c] -> main mechanical inform; density (and approx. (q_c] -> main mechanical inform; density (and approx. (q_c] -> main mechanical inform; density (and approx. (q_c] -> main mechanical inform; density (and approx. (q_c] -> main mechanical inform; density (and approx. (q_c] -> main mechanical inform; density (and approx. (q_c] -> main mechanical inform; density (and approx. (q_c] -> main mechanical inform; density (q_c) (q_c)

5. Deep foundation - if the stabil, loadable layer in the deep for building or any geot works - if dewatering in shallow foundation have much more cost - it slipping on that unfavorable redimentation takes place in case of shallow f. . - it can be cavitation (for example bridge rile) - if the deep found is more economical than shallow CFF pile - we use a spiral shape drill - the soil plug is retaining the wall of boschole - the concrete added across the drilling rod - the presure (from added concrete) and pulling force displacing the soil place - are metal annatour into the liquid concrete - d 30 - 80; 612 - 25 pulling 0,000 riplug metal itour diillin nerete

Block instrond - we investing a unit, what is separated 3 parts - the upper (active Ea) and lower (Ep) is defined with forces, and we invest the equilibrium of the middle - after defining the forces, we searching for a slope . Sabilition factor, especially were is its minimum (Doning $\int = \frac{E_{p+K+S}}{E_{m+T}}$ Ep=Ep. coss GTEN-G. COSE TEG. SILE È K=c.l S= N.lat $\mathcal{D} = \frac{K + S + E_P}{T + E_a} = \frac{c \cdot l + N t_{g} \phi + E_{P} \cos \varepsilon}{G \sin \varepsilon + E_a \cdot \cos \varepsilon} \left\{ \mathcal{D}_{min}^{=?} \right\}$ Passive earth pressure -passive e.Y arcting, when a force pressing the wall to the background soil - relatively high notion mobilising the passive easth p. - it to can be a useful, sctaining force in geotechnin (times Bp Ep, -Eg Ea: Eo: Ep= OAS: 1:5 relatively high displacing Ep failure

C+0- 2	1 7	ty (15 + 1)	
		K- Glad+C	
	× /	R	
"\	C K.		
<u> </u>			
	En Gro 54	5x0-52) Grp	
Exp-> sin	$ \begin{aligned} fr = \frac{k}{0} \longrightarrow 0 = 6 \end{aligned} $	$= \frac{5xp-5z}{2} \int \sin \phi O =$	R
	D = 6	2+ Gip (sing o	
		2 500027	- sind 6xp = 6xp - 62
		52 + sind	62 = 6xp - sind 6xp
			$in(\phi) = 5xp(1-sin\phi)$
		(Jxp =)	52 (1+ sin de)
ŧ. > 1 /11	· 6) R'	l	Kr
tp→ tg(41	(+2) = c		14.40
C.f	(45+ +) - R'		5
	> 2	$c \left(\frac{4}{5} + \frac{4}{2} \right) $	5 Gxp= 62Kp+2cukp
tp=2R	≤ 1		
7		The	
EC7 Ge	stech. categories	we define 3 cat	. /
		1 (7)	1 3
Building	small buildings	usual build .	lange
ubsoil	favorable	mund	large b. unfavorable
visk	without effect	normal eff.	spec. eff. , have to dece
est	& sutine	average	tuge risk
planning	sutine planning	lebor, field tests average p.	special process special planning
nonitorio	simple	usual monitoring	special measure
deep found	ø	can be	special and new tech.
example	1-2 floor building		dewatering; landfill;
	150 2N load; 100 2N/m load;	pit, setaining wat	1 en la 1 - 1 0 -
	pit or ret. wall till 2 m	alich greater teran	

5. Others

During the exams using of mobile phone, smart devices, notes or copies of books are not acceptable. Violation of the examination order entails the suspension and completion of the writing of the exam.